
Matthew Cordery

Application Engineer

matthew.cordery@intel.com

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Notices and Disclaimers

2

DISTRIBUTION STATEMENT: None Required

Disclosure Notice: This presentation is bound by Non-Disclosure Agreements between Intel Corporation and the Department of Energy, and Argonne National Lab, and
is therefore for Internal Use Only and not for distribution outside these organizations or publication outside the above referenced Subcontracts.
Intel Corp Proprietary Information: This document contains trade secrets and/or proprietary information of Intel Corporation and Intel Federal LLC (“Intel”) and is
exempt from disclosure under the Freedom of Information Act. The information contained herein shall not be duplicated, used or disclosed outside the U.S.
Department of Energy, UChicago Argonne LLC except as permitted by the contract previously referenced. The data subject to this restriction are contained in all sheets
of this document.
USG Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor
any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.
Export Control: This document contains information that is subject to export control under the Export Administration Regulations. However the contents remain within
the applicable ECCN’s provided in the most recent Multi Party for Intel Restricted Secret Information that is applicable to the CORAL Aurora Program.
Intel Disclaimer: Intel makes available this document and the information contained herein in furtherance of the CORAL Aurora Program. None of the information
contained herein is, or should be construed, as advice. While Intel makes every effort to present accurate and reliable information, Intel does not guarantee the
accuracy, completeness, efficacy, or timeliness of such information. Use of such information is voluntary, and reliance on it should only be undertaken after an
independent review by qualified experts.
Access to this document is with the understanding that Intel is not engaged in rendering advice or other professional services. Information in this document may be
changed or updated without notice by Intel.
This document contains copyright information, the terms of which must be observed and followed.
Reference herein to any specific commercial product, process or service does not constitute or imply endorsement, recommendation, or favoring by Intel or the US
Government.
Intel makes no representations whatsoever about this document or the information contained herein. IN NO EVENT SHALL INTEL BE LIABLE TO ANY PARTY FOR ANY
DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES FOR ANY USE OF THIS DOCUMENT, INCLUDING, WITHOUT LIMITATION, ANY LOST PROFITS,
BUSINESS INTERRUPTION, OR OTHERWISE, EVEN IF INTEL IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Copyright © 2020, Intel Corporation. All rights reserved – unpublished work.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
3

Get the tools

• Advisor and VTune are now part of the Intel® oneAPI Base Toolkit

• Download entire toolkit

• Download just VTune and Advisor (customizable installation)

• https://software.intel.com/content/www/us/en/develop/tools/oneapi/bas
e-toolkit/download.html

• Available for Windows, Linux, MacOS (view Linux results)

https://software.intel.com/content/www/us/en/develop/tools/oneapi/base-toolkit/download.html

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
4

Agenda
• Advisor – Intel’s vectorization and optimization tool

• CPU Optimization

• Roofline

• GPU Offloading

• Offload Advisor

• Roofline

• VTune – Intel’s performance metric investigation tool

• CPU capabilities

• GPU metrics

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
5

Tuning at Multiple Hardware Levels

Exploiting all features of modern processors requires good use of the available resources

▪ Core

– Vectorization is critical with 512bit FMA vector units (32 DP ops/cycle)

– Cache use needed to feed vector units

▪ Socket

‒ Using all cores in a processor requires parallelization (MPI*,
OMP*,CUDA*,OPENCL*,SYCL*,DPC++ …)

‒ Using coherent, shared socket caches

▪ Node

‒ Minimize remote memory access (control memory affinity)

‒ Minimize resource sharing (tune local memory access, disk IO and network traffic)

The naïve code that could

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
7

N-body code

▪ Dr. Fabio Baruffa (original): https://github.com/fbaru-dev/nbody-demo

▪ Paulius Velesko (includes gpu): https://github.com/pvelesko/nbody-demo.git

– Basically, the code in this demo

https://github.com/fbaru-dev/nbody-demo
https://github.com/pvelesko/nbody-demo.git

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
8

Nbody gravity simulation
Consider a distribution of n point masses located at ri with masses mi and velocities and
accelerations vi and ai, respectively

We want to calculate the position of the particles after a certain time interval using
Newton’s law of gravity.

struct Particle
{
public:

Particle() { init();}
void init()
{

pos[0] = 0.; pos[1] = 0.; pos[2] = 0.;
vel[0] = 0.; vel[1] = 0.; vel[2] = 0.;
acc[0] = 0.; acc[1] = 0.; acc[2] = 0.;
mass = 0.;

}
real_type pos[3];
real_type vel[3];
real_type acc[3];
real_type mass;

};

for (i = 0; i < n; i++){ // update acceleration
for (j = 0; j < n; j++){

real_type distance, dx, dy, dz;
real_type distanceSqr = 0.0;
real_type distanceInv = 0.0;

dx = particles[j].pos[0] - particles[i].pos[0];
…

distanceSqr = dx*dx + dy*dy + dz*dz + softeningSquared;
distanceInv = 1.0 / sqrt(distanceSqr);

particles[i].acc[0] += dx * G * particles[j].mass *
distanceInv * distanceInv * distanceInv;

particles[i].acc[1] += …
particles[i].acc[2] += …

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
9

Infinite cycle only broken by external
constraints (time, papers, releases …)

Procedures for measuring performance
and validating results are critical

Automation and environment control are
key for consistency

Where do I start?

The Basic Tuning Cycle

Measure
Performance

Profile
Application

Modify Code

Validate
Results

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
10

Version Optimizations

▪ Ver0

▪ Initial implementation

▪ Ver1

▪ Vectorized with compiler flags (march/mtune)

▪ Ver2

▪ Use only floats

▪ Ver3/4

▪ AoS -> SoA + SIMD Reduce

▪ Ver 7

▪ OpenMP with data alignment

Vectorization and Static Analysis

https://www.alcf.anl.gov/user-guides/advixe-cl-xc40

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® Advisor – Vectorization Optimization

Roofline model analysis:
▪ Automatically generate roofline model

▪ Evaluate current performance

▪ Identify boundedness

http://intel.ly/advixe-cl-xe
Add Parallelism with Less Effort, Less Risk and More Impact

Faster Vectorization Optimization:
▪ Vectorize where it will pay off most
▪ Quickly ID what is blocking vectorization
▪ Tips for effective vectorization
▪ Safely force compiler vectorization
▪ Optimize memory stride

12

http://intel.ly/advisor-xe

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
13

Typical Vectorization Optimization Workflow

There is no need to recompile or relink the application, but the use of -g is recommended.

Note: if you’re using Theta run out of /projects rather than /home

• Collect survey (overhead ~5%) advixe-cl -c survey

▪ Basic info (static analysis) - ISA, time spent, etc.

• Collect roofline advixe-cl -c roofline

▪ Basically the survey analysis above with roofline analysis (trip counts, flops)

• Collect dependencies (overhead 5-1000x) advixe-cl -c dependencies

▪ Differentiate between real and assumed issues blocking vectorization

• Collect Memory Access Patterns advixe-cl -c map

• Get advice on memory strides

• NB: You can run multiple analyses, and sometimes you have to, to get all of the information you need.

• For example, in the same batch job you can do a roofline and a dependency analysis and have the output directory be the same so all of that
information is shown together in a single context.

▪ Make sure you create different output directories for different experiments.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
14

What is a roofline?

• A roofline is a graphical representation of two factors that affect code
performance: flops & memory bandwidth

• Codes at scale may be limited by file I/O or MPI but there can be
different rooflines for those cases.

• Allows you answer questions like:

• What is/isn’t limiting this kernel’s performance? Which kernels are
more important to overall code performance?

• What gains might I see from focusing on a particular kernel?

• Where do I need to focus my software engineering efforts to achieve
further gains?

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
15

Roofline cont’d

• Arithmetic intensity (AI)

• Flops / bytes ratio

• Bytes can be data moved to/from DRAM, cache, etc.

• Kernels with a high AI are limited by chip floating point performance
(e.g. DGEMM)

• Kernels with a low AI are limited by memory bandwidth (e.g. STREAM
triad, many HPC computational physics kernels)

• Kernels can be limited by both

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
16

Roofline

Flops/bytes

G
fl

o
p

s

Gflops = MIN(AI * BW, Gflopsmax)

Limited by floating point ops

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

FMA Peak

Vector Add Peak

Scalar Add Peak

17

Cache-Aware Roofline Optimization
Next Steps

If under or near a
memory roof…

If just above the
Scalar Add Peak

If Under the Vector Add Peak

If under the
Scalar Add Peak…

FLOPS

Arithmetic Intensity

• Try a MAP analysis.
Make any appropriate
cache optimizations.

• If cache optimization
is impossible, try
reworking the
algorithm to have a
higher AI.

Check “Traits” in the Survey to see if FMAs are
used. If not, try altering your code or compiler
flags to induce FMA usage.

Check vectorization
efficiency in the Survey.
Follow the
recommendations to
improve it if it’s low.

Check the Survey Report
to see if the loop
vectorized. If not, try to
get it to vectorize if
possible. This may involve
running Dependencies to
see if it’s safe to force it.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
18

Use --help option!

advixe-cl --help collect

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
19

Generate Advisor Command Lines from the GUI

How accurate you want
your reports to be

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
20

Collect survey and tripcounts (roofline)

$ Theta: module load PrgEnv-intel amplxe-cl advixe-cl

$ cd project; make

#!/bin/bash

..stuff..

advixe-cl –collect=roofline –trip-counts –project-dir=<project-
dir> -- <executable> <parameters>

Where your results go

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
21

View Result on Local Machine

• Make sure your local version of Advisor (or VTune) is at least the same as
that of the one used to generate the data otherwise errors might occur.

• X-forwarding is not recommended.

• Tar the result along with sources and binary (if you want to be able to view
them, unless you already have them locally)

• Copy to your local machine

• May have to point advixe-cl at your local sources and binary

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
22

Summary provides
overall performance
characteristics

Top time consuming
loops are listed
individually

Vectorization
efficiency is based on
used ISA

Summary Report

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
23

Survey Report (Source Tab)

Notice the following:

• Vector ISA
• Type Conversions
• Memory Access

Patterns

All of these elements
may affect performance

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
24

Survey Report (Code Analytics Tab)

Analytics tab contains a
wealth of information

▪ Instruction set

▪ Instruction mix

▪ Traits (sqrt, type
conversions, unpacks)

▪ Vector efficiency

▪ Floating point statistics

And explanations on how
they are measured or
calculated - expand the box
or hover over the question
marks.

Roofline

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
26

Using single threaded roof

Code vectorized, but
performance on par with
scalar add peak?

▪ Irregular memory access
patterns force gather
operations.

▪ Overhead of setting up
vector operations
reduces efficiency.

CARM (Cache-aware roofline model) Analysis

Next step is clear: perform a Memory Access Pattern analysis

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
27

Storage of particles is in an Array
Of Structures (AOS) style

This leads to regular, but non-unit
strides in memory access

▪ 33% unit

▪ 0% uniform, non-unit

▪ 67% non-uniform

Re-structuring the code into a
Structure Of Arrays (SOA) may
lead to unit stride access and
more effective vectorization

Memory Access Pattern Analysis (Refinement)

advixe-cl –c roofline –r mydat ./nody.x 4000 500

advixe-cl –c map –r mydat ./nbody.x 4000 500

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

28

Vectorization: gather/scatter operation

The compiler might generate gather/scatter instructions for loops automatically
vectorized where memory locations are not contiguous

struct Particle

{

public:

...

real_type pos[3];

real_type vel[3];

real_type acc[3];

real_type mass;

};

struct ParticleSoA

{

public:

...

real_type *pos_x,*pos_y,*pos_z;

real_type *vel_x,*vel_y,*vel_z;

real_type *acc_x,*acc_y;*acc_z

real_type *mass;

};

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Memory access pattern analysis
How should I access data ?

Best: Unit stride access are faster

OK: Constant stride are more complex

Bad: Irregular access

29

for (i=0; i<N; i++)

A[i] = B[i]*d

B

For B, 1 cache line load computes 4 DP

B

For B, 2 cache line loads compute 4 DP with
reconstructions

for (i=0; i<N; i+=2)

A[i] = B[i]*d

for (i=0; i<N; i++)

A[i] = B[C[i]]*d

B

For B, 4 cache line loads compute 4 DP with
reconstructions, prefetching might not work

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
30

In this new version (version 3 in
GitHub sample) we introduce the
following change:

▪ Change particle data structures
from AOS to SOA

Note changes in report:

▪ Performance is lower

▪ Main loop is no longer vectorized

▪ Assumed vector dependence
prevents automatic vectorization

Performance After Data Structure Change

Next step is clear: perform a Dependencies analysis

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
31

Dependencies analysis has
high overhead:

▪ Run on reduced
workload

Advisor Findings:

▪ RAW dependency

Dependencies Analysis (Refinement)
Run “survey” followed by “dependencies”

advixe-cl –c dependencies ./nbody.x 4000 500

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
32

Recommendations

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
33

Performance after resolve dependencies

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
34

Performance After Resolved Dependencies

New memory access pattern plus vectorization produces much improved performance!
What’s next? Try suggestions for aligning data.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
35

Final performance
• Some additional

performance eked out.
• Vectorization of loop now

100%
• At this point, you’ll likely

need to switch to VTune to
begin investigating cache
misses.

Which codes to migrate to GPU?

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
37

Offload Advisor

• Another option for accelerating loops is offloading them to an accelerator
such as a GPU.

• As with vectorization, Advisor now has the capability of allowing the user
to test if kernels would benefit from offloading

• Run a number of Advisor collections to generate data

• Run a projection to a specific architecture (Intel only)

• Report shows which loops would benefit from offloading, and which would
not.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
38

Nbody test case

• Take final optimized test case (ver7) with the main computational loop
parallelized with OpenMP on the host (OpenMP not a requirement)

• Collect a survey

• advixe-cl --collect=survey --project-dir=./advi_proj_v7 --stackwalk-
mode=online --static-instruction-mix -- ./nbody.x 4000 500

• Collect flops and counts and target a particular device

• advixe-cl --collect=tripcounts --project-dir=./advi_proj_v7 --flop --
target-device=gen9_gt2 -- ./nbody.x 4000 500

• Do a projection, targeting the same device

• advixe-cl --collect=projection --project-dir=./advi_proj_v7 --
config=gen9_gt2 --no-assume-dependencies

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
39

Offload summary

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
40

Offload modeling Accelerated regions tab
• Drill down on offloaded loop

• Estimated speedup
• Launch and data transfer latencies

• Offload loop with
• OpenMP target directives and data

mapping clauses
• Profile again with

• advixe-cl –collect=roofline
–profile-gpu

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
41

GPU Roofline Summary
• Program time
• GPU time
• Data transfer

time
• CPU time
• FPU Utilization
• EU threading

Occupancy
• IPC rate
• Thread count
• Roofline
• Hotspots

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
42

GPU Roofline Insights • Measured GPU roofline
• L3, SLM, GTI and

DRAM bandwidth
• Kernel location
• FPU Utilization
• EU Threading Occupancy
• IPC rate
• Active/stalled/idle %

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
43

Data collection for specific regions: ittnotify

#include <ittnotify.h>

Int main(int argc, char* argv[])

{

// do work here

__itt_pause();

// do more work

__itt_resume()

// Interesting work here

__itt_pause()

// Do more uninteresting work

Return 0;

}

• If you just want to collect/examine data from
specific regions in your code, you can use
ittnotify interface.

• Link in libittnotify.a

• Can start program with __itt_pause() or
launch with advixe-cl –start-paused.

• Can also use in VTune

• Also a Fortran interface

• e.g. CALL ITT_PAUSE()

Core-level hardware metrics

https://www.alcf.anl.gov/user-guides/amplxe-cl-xc40

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
45

Intel® VTune™ Amplifier

VTune is a full system (node level) profiler

▪ Accurate

▪ Low overhead

▪ Comprehensive (CPU, GPU, microarchitecture, memory, IO, threading, …)

▪ Configurable interface with easily accessed help

▪ Direct access to source code and assembly

Analyzing execution behavior with shared resources is
critical in achieving good performance on multicore and
offload processing systems

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

VTune Phases

Collection Finalization

Reports

Display (Views)

• Record data

• Occurs while target
executable is
running

• Calculations based on
recorded data

• Used in displays / views

• Occurs after collection
or in GUI (deferred)

• VTune GUI

• Interactive, configurable

• Static report

• Various formats: text,
HTML, XML, CSV

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
47

Predefined Collections

• Many available analysis types (only sme below):

• hotspots Basic hotspots

• memory-consumption Use of memory and allocation

• uarch-exploration CPU microarchitecture bottlenecks

• memory-access Memory access

• threading Threading performance, overhead

• hpc-performance OpenMP eff., memory access, vectorization,etc

• io I/O subsystems, CPU, processor buses

• gpu-offload Code execution on cpu and gpu

• gpu-hotspots Hots spots, GPU hw metrics, mem latency, etc

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
48

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
49

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
50

HPC-Perf analysis: nbody demo (ver7: threaded)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
51

Use drop down menu to access
‘Hotspots by CPU Utilization’

Double click on line to access
source and assembly.

Notice the filtering options at the
bottom, which allow customization
of this view.

Can also do this under “HPC
Performance Characterization” and
see loop/function data for spin
time, serialization, FP Ops, CPI, etc.

Next steps would include additional
analysis to continue the
optimization process.

HPC-Perf: Bottom-up Hotspots view

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
52

Click through bottom’s
up view to see source
and metrics.

HPC Perf: Bottoms Up – Source View

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
53

Get overview of

• total loads/stores

• bandwidth usage

• L3 bandwidth

• GPU bandwidths

• top functions with high bandwidth
utilization.

HPC Perf: Memory Usage

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
54

Can see loads and stores by
loop/function

• Sort by loads/stores/llc miss
counts

Can also click through as before
to see source level view of

• Cpu time

• Loads/stores

• LLC miss counts

HPC Perf: Memory Usage, bottom’s up view

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
55

Drop down for Hardware Events.

Summary of all measured
performance counters

Very similar results to what you’d get
from ‘uarch-collection’

HPC-Perf: Hardware Events

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
56

• Bottom up view of
counters

• Scroll window to see all
counters.

• Timeline of counter
activity

• Click through to see
source Level view of
counter data

• CPU thread and GPU
counters

HPC-Perf: Hardware Performance Counters

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
57

• Running 4 threads

• Want ‘Retiring to be
100%’ – high
instruction throughput

• Reporting core bound
– implying not enough
resources available, in
this case likely to be
FP units

• Also can look at raw
performance counters
(including timeline).

uarch-exploration: summary

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
58

uarch-exploration: bottom up
Like other collections, can click through
the top hotspots to see source code and
where limiter is seen to be sequence of
operations with high flop counts.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
59

• Running with 8 threads improves
performance very slightly but
shows code is now frontend bound

• Likely due to pipeline slots being
stalled due to too many memory
references per cycle.

uarch-exploration: 8 thread summary

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
60

Memory-Consumption collection:
Shows top memory
consumers

Bottom’s up show’s by
loop/function/timeline of
consumption

Can click through
function/loop to see
allocation/deallocation sizes at
source level.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
62

Itt pause & resume

#include <ittnotify.h>

…uninteresting work….

__itt_resume();

…interesting work….

__itt_pause();

…more uninteresting work…

• Launch with amplxe-cl –start-paused
……

Use __itt_pause() &
__itt_resume() to target
data collection only in
specific regions.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
63

Using itt to create custom counters

One can create custom counters that
show up on VTune timelines by using
the itt interface.

In the example at the right, the counter
“myFlops” will show up in the
performance metrics timelines.

Tested with hotspot and uarch-
exploration and it works. Some issue
with hpc-performance that is being
looked at.

#include <ittnotify.h>

Main()
{

__itt_counter myCounter;
__itt_counter_create(“myFlops”, “Domain”);
…do some stuff….
__itt_counter__set_value(myCounter, &val);
…do some stuff…
__itt_counter_set_value(myCounter, &val);
…do more stuff…
__itt_counter_inc_delta(myCounter, &val);
…do more stuff….
__itt_counter_dec_delta(myCounter, &val);

__itt_counter_destroy(myCounter);

}

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
64

Counter creation
example

Collected using
‘hotspots’

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
66

Collecting on Single MPI Ranks

• Might want to use VTune on an MPI application but not, by default, collect
data on all MPI ranks as VTune is not designed for that.

• Still possible to gather some useful data.

• Using ittnotify is not the route as it still collects data on all ranks even if
you pause collection before MPI_Init()

• Use env vars and MPMD mode:

mpirun –genv I_MPI_PIN_PROCESSOR_LIST=0-2,4-7 –n 7 ./app :

-genv I_MPI_PIN_PROCESSOR_LIST=3 –n 1 amplxe-cl –c
hotspots

–r appdat -- ./app

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
68

VTune gpu-offloading

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
69

• Graphics
Information
about
speeds and
feeds (no
context)

70

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
71

Python

Profiling Python is straightforward in VTune™ Amplifier, as long as one does the
following:

▪ The “application” should be the full path to the python interpreter used

▪ The python code should be passed as “arguments” to the “application”

In Theta this would look like this:

mpirun -n 1 -N 1 amplxe-cl -c hotspots -r res_dir \

-- /usr/bin/python3 mycode.py myarguments

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
72

Naïve implementation of the
calculation of a covariance matrix

Summary shows:

▪ Single thread execution

▪ Top function is “naive”

Click on top function to go to Bottom-
up view

Simple Python Example on Theta

mpirun -n 1 -N 1 amplxe-cl -c hotspots -r vt_pytest \

-- /usr/bin/python ./cov.py naive 100 1000

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
73

Bottom-up View and Source Code

Inefficient array multiplication found quickly
We could use numpy to improve on this

Note that for mixed Python/C code a Top-Down view can often be helpful to drill down into the C kernels

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Fixes

No call stack information/unknown stack frame

▪ Check finalization log

▪ Make sure VTune finds your binary along with libraries that you call

Incompatible database scheme when trying to open result in GUI

▪ Make sure your local VTune is the same version or newer

VTune sampling driver.. using perf or errors mentioning PMU Resources

▪ Notify support@alcf.anl.gov or your nearest Intel COE person

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Advisor

add `--no-auto-finalize` to the aprun

followed by `advixe-cl R survey …` without
aprun will cause to finalize on the
momnode rather than KNL.

You can also finalize on thetalogin:

cd your_src_dir;

export SRCDIR=`pwd | xargs realpath`

advixe-cl -R survey --search-dir
src:=${SRCDIR} ..

VTune

add `--finalization-mode=none` to aprun

followed by `amplxe-cl -R hotspots …`
without aprun will cause to finalize on
momnode rather than KNL

You can also finalize on thetalogin:

cd your_src_dir;

export SRCDIR=`pwd | xargs realpath`

amplxe-cl -R hotspots --search-dir
src:=${SRCDIR} ..

Speeding up finalization

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
78

Managing overheads

Advisor Dependencies and MAP analyses can have huge overheads

If able, run on reduced problem size. Advisor just needs to figure out the
execution flow.

Only analyze loops/functions of interest:

https://software.intel.com/en-us/advixe-cl-user-guide-mark-up-loops

https://software.intel.com/en-us/advisor-user-guide-mark-up-loops

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
79

VTune

• What’s my cache hit ratio?

• Which loop/function is consuming
most time overall? (bottom-up)

• Am I stalling often? IPC?

• Am I keeping all the threads busy?

• Am I hitting remote NUMA?

• When do I maximize my BW?

Advisor

• Which vector ISA am I using?

• Flow of execution (callstacks)

• What is my vectorization efficiency?

• Can I safely force vectorization?

• Inlining? Data type conversions?

• Roofline

When do I use VTune vs Advisor?

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
81

VTune Cheat Sheet
Compile with –g -dynamic

amplxe-cl –c hpc-performance –flags -- ./executable

• --result-dir=./amplxe-cl_output_dir

• --search-dir src:=../src --search-dir bin:=./

• -knob enable-stack-collection=true –knob collect-memory-
bandwidth=false

• -knob analyze-openmp=true

• -finalization-mode=deferred if finalization is taking too long on KNL

• -data-limit=125  in mb

• -trace-mpi for MPI metrics on Theta

• amplxe-cl –help collect survey

https://software.intel.com/en-us/amplxe-cl-amplifier-
help-amplxe-cl-command-syntax

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
82

Advisor Cheat Sheet
Compile with –g -dynamic

advixe-cl –c roofline/depencies/map –flags -- ./executable

• --project-dir=./advixe_output_dir

• --search-dir src:=../src --search-dir bin:=./

• -no-auto-finalize if finalization is taking too long on

KNL

• --interval 1 (sample at 1ms interval, helps for profiling

short runs)

• -data-limit=125  in mb

• advixe-cl -help

https://software.intel.com/en-us/advixe-cl-help-lin-
command-line-interface-reference

